

Tecnología Electrónica

Tema 2: Realimentación y estabilidad.

Teoría de realimentación. (1/3)

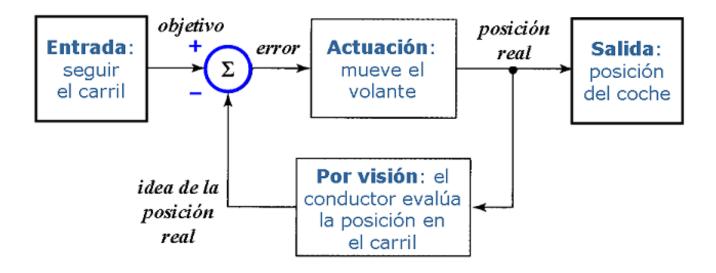
Versión: 2015/02/20

Índice general del Tema

- 1. Introducción.
- 2. Teoría básica de realimentación
 - 1. Fundamentos y definiciones
 - 2. Ventajas de la realimentación negativa
 - 3. Topologías de realimentación
- 3. Realimentación en circuitos electrónicos
 - Efectos de carga.
 - 2. Métodos de resolución de circuitos realimentados
- 4. Estabilidad en circuitos realimentados
 - 1. Análisis de la estabilidad.
 - 2. Métodos de compensación

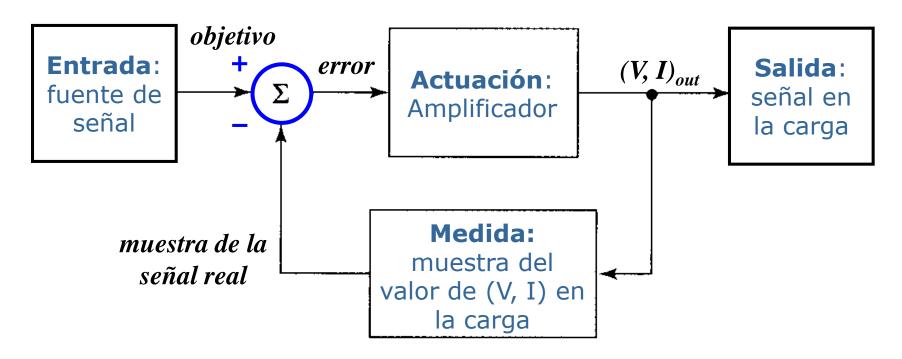
1. Introducción

- □ ¿Qué es la teoría de *realimentación*?
 - Un modelo para el comportamiento de un sistema (electrónico, físico, etc.) en el que parte de la información de su salida se reenvía de nuevo hacia la entrada
 - Retro-alimentación, o feed-back.
 - Permite corregir desviaciones, errores, tolerancias, etc.
 - Prácticamente todos los sistemas funcionales están **realimentados** (!)
- Un ejemplo, físico:
 - La conducción de un coche.
 - Sistema: conductor coche carretera
 - Objetivo: seguir tu carril
 - Desde el punto de vista del conductor:
 - ¿Cuál es la entrada salida del sistema?
 - ¿Sería capaz de conseguir el **objetivo** (ir por el carril) <u>sin ver la carretera</u>?



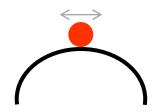
1. Introducción

- Ejemplo de un sistema realimentado
 - Objetivo (comando): seguir el centro del carril
 - Salida: posición relativa del coche en el carril
 - Entrada: error entre la posición del coche y el objetivo
- ¿Cómo funciona un sistema conductor-coche-carretera?
 - El conductor (controlador) mueve a izquierda y derecha el volante para mantener el coche en el centro del carril.



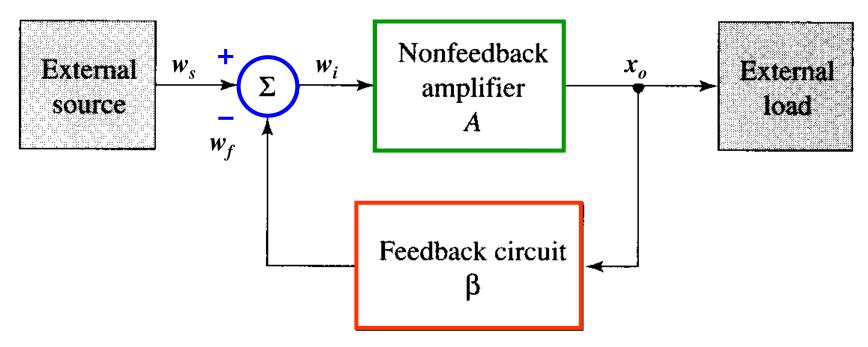
1. Introducción

- Realimentación en circuitos electrónicos
 - El mismo esquema fundamental
 - Señal de entrada (comando), señal de salida, actuación (amplificador).
 - El sistema *mide* la forma de la salida, la compara con la entrada y es el *error* lo que actúa sobre la entrada del amplificador.
 - De esta forma, mejoran muchos parámetros del amplificador



2. Teoría de realimentación

- Problema original a resolver (la necesidad)
 - Reducir la distorsión de los repetidores de señal telefónica
- Solución: la idea de realimentación y su formulación matemática
 - Harold S. Black, en 1927
 - Patentada finalmente en 1937
 - El proceso de patente duró 9 años: la oficina de patentes desconfió de que la idea funcionase realmente.
 - Ahora, en electrónica: todo amplificador práctico está realimentado
- Formalmente, dos tipos de realimentación
 - Negativa: compensa los cambios espontáneos
 - Sistema estable
 - ...idea gráfica → una canica en un hoyo...
 - Positiva: realza los cambios espontáneos
 - Sistema inestable.
 - ...idea gráfica → una canica sobre un tubo...



2.1. Teoría de realimentación negativa

- La idea de Real. negativa se formaliza en el signo (-) del sumador
- Factor de realimentación β (ojo, inada que ver con BJTs!)
- Esquema válido para cualquier tipo de amplificador
- Ecuación fundamental (ver trp. 9):

$$A_f = \frac{A}{1 + A\beta}$$

2.1. Teoría de Realimentación negativa

$$A_f = \frac{A}{F} = \frac{A}{1+L} \qquad \qquad \qquad A_f = \frac{A}{1+A\beta} \qquad \Longrightarrow \qquad A_{CL} = \frac{A_{OL}}{1+A_{OL}\beta}$$

$$A_f = \frac{A}{1+A}$$

$$A_{CL} = \frac{A_{OL}}{1 + A_{OL}\beta}$$

- Elementos de la ecuación fundamental
 - Ganancia en Lazo Abierto:

$$A = A_{OL} = A_{Open-Loop} = \frac{x_o}{w_i}$$

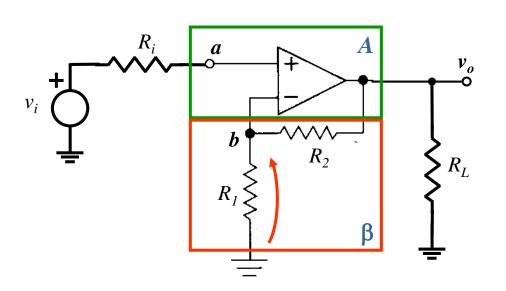
Ganancia en Lazo Cerrado:

$$A_f = A_{CL} = A_{Closed-Loop} = \frac{x_o}{w_s}$$

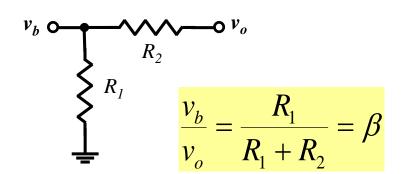
Ganancia o cantidad de realimentación: $\beta = \frac{w_f}{c}$

$$\beta = \frac{w_f}{x_o}$$

- Ganancia de **Lazo**: $L = A\beta$
- Factor de mejora (ó mérito) F:


$$F = 1 + A\beta \leftarrow F = 1 + L$$

🤍 2.1. Teoría de realimentación negativa


- Un ejemplo ya conocido...
 - Amplificador con AO, configuración no inversora.

• **AO**, con *A*_d=*A*:

$$v_o = A(v_a - v_b)$$

• **Red** β, resistiva:

Al realimentar:

$$v_o = A(v_a - v_b) = A(v_i - \beta v_o)$$

$$v_o(1 + A\beta) = Av_i$$

$$\Rightarrow A_f = \frac{v_o}{v_i} = \frac{A}{1 + A\beta}$$

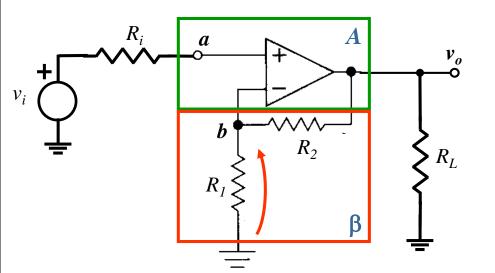
$$\Rightarrow A_f = \frac{v_o}{v_i} = \frac{A}{1 + A\beta}$$

2.2. Efectos de la realimentación negativa

Ventajas de la Re-

- Reducción de la sensibilidad a la variación de sus parámetros
 - Tolerancias en componentes, variaciones por Temperatura, ...
- Reducción de la distorsión no lineal
- Incremento del Ancho de Banda (BW)
- Ajuste de las impedancias terminales (Z_e y Z_s)
- Ajuste de la respuesta temporal, ...

Desventajas

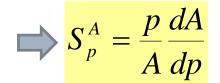

- Disminución de la ganancia
 - Es un inconveniente muy relativo (el beneficio es mucho mayor)
 - Puede solventarse aumentando el número de etapas.
- Peligro de inestabilidad
 - *iEsta cuestión sí es muy importante!*
 - Es necesario **saber estimar este riesgo**, para prevenirlo y/o compensarlo.

2.2. Beneficios de la realimentación negativa

- □ Ejemplo: Amplificador no-inversor con AO.
 - Como A es de valor muy elevado, es fácil lograr que Aβ »1:

$$\left| A_f = \frac{A}{1 + A\beta} \right|_{A\beta > > 1} \approx \frac{1}{\beta} = \frac{R_1 + R_2}{R_1}$$

$$\beta = \frac{v_b}{v_o} = \frac{R_1}{R_1 + R_2}$$


- Mientras se cumpla que Aβ»1 se logra:
 - Tener una A_f que no depende de los parámetros de A
 - Insensible a variaciones de A con Temperatura, tiempo, tolerancia...
 - A_f es lineal y ajustable mediante los elementos pasivos de β
 - Mayor libertad del diseñador y mejor repetitibilidad del diseño

2.2.1. Reducción de la sensibilidad

- lacksquare Sensibilidad de A al parámetro p
 - Cuantifica la variación relativa de A respecto a las variaciones relativas de p:

- lue Consecuencia de realimentar A:
 - la sensibilidad del amplificador realimentado A_f mejora (se **reduce**) en un factor F:

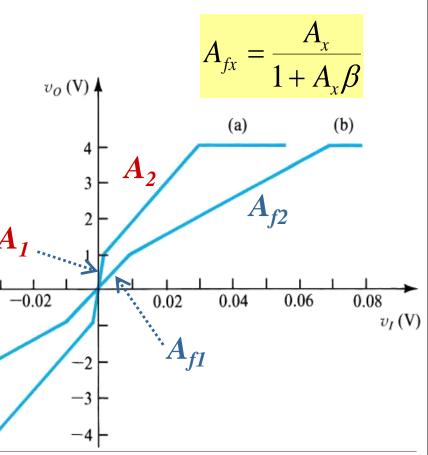
$$S_p^{A_f} = \frac{1}{1 + A\beta} S_p^A$$

- Amplificador multietapa: mejora por realimentar cada etapa
 - La ganancia crece exponencialmente con el nº de etapas (n)
 - Mientras la sensibilidad crece más despacio (linealmente con n)
 - Ejemplo con *n* etapas iguales:

n	G	S_p^G
1	8	0,001
2	64	0,002
3	512	0,003
4	4096	0,004

2.2.2. Reducción de la distorsión no-lineal

Curva (a):

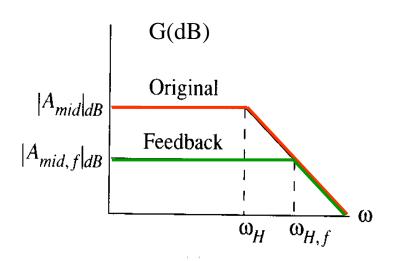

- Ganancia 1000, 100, en cada tramo (ganancia 0, en saturación)
- Relación de no-linealidad: de 1000 a 100 → 10 veces

Curva (b):

- Amp. realimentado con β =0,01
- Nuevas ganancias: 90,9 y 50
- Relación de no-linealidad: de 91 a 50 → 1,8 veces

$$A_{f1} = \frac{1000}{1 + 1000 \cdot 0.01} = 90,9$$

$$A_{f2} = \frac{100}{1 + 100 \cdot 0.01} = 50$$



2.2.3. Efecto sobre el Ancho de Banda

Sencillo de modelar en el caso de polos dominantes

• En Alta Frecuencia:

Original
$$\rightarrow A = A_{mid} \frac{1}{1 + \frac{j\omega}{\omega_H}}$$

Realimentado
$$\rightarrow A_f(\omega) = \frac{A(\omega)}{1 + A(\omega)\beta}$$

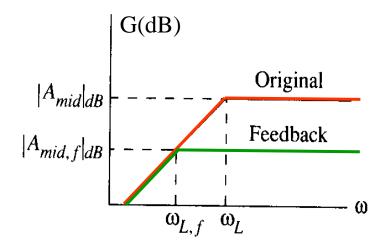
Operando se tiene:

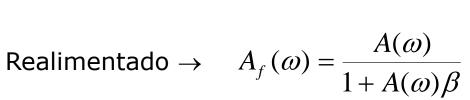
$$A_{f} = A_{mid,f} \frac{1}{1 + \frac{j\omega}{\omega_{Hf}}}$$

$$A_{mid,f} = \frac{A_{mid}}{1 + A_{mid}\beta}$$

$$\omega_{Hf} = \omega_{H}(1 + A_{mid}\beta)$$

$$\omega_{Hf} = \omega_{H}(1 + A_{mid}\beta)$$


$$\omega_{Hf} = A_{mid,f} \cdot \omega_{Hf} = A_{mid} \cdot \omega_{H} = \text{cte.}$$
Importante: nótese que el producto Ganancia por Ancho de Banda (GBW) es una constante.


2.2.3. Efecto sobre el Ancho de Banda

Con el polo dominante en Baja Frecuencia (cero en 0 + polo):

Original
$$\rightarrow A = A_{mid} \frac{j\omega}{j\omega + \omega_L}$$

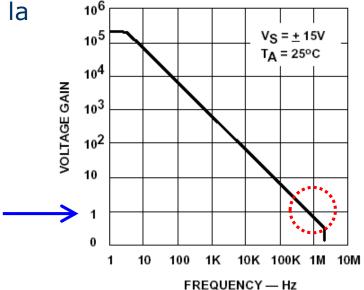
$$A_{f} = A_{mid,f} \frac{j\omega}{j\omega + \omega_{Lf}}$$

$$\omega_{Lf} = \frac{A_{mid}}{1 + A_{mid}\beta}$$

$$\omega_{Lf} = \frac{\omega_{L}}{(1 + A_{mid}\beta)}$$

□ También se traslada la frecuencia de corte inferior, pero no se puede relacionar con GBW.

2.2.3. Ejemplo: GBW en el AO real


El AO 741 tiene un polo dominante

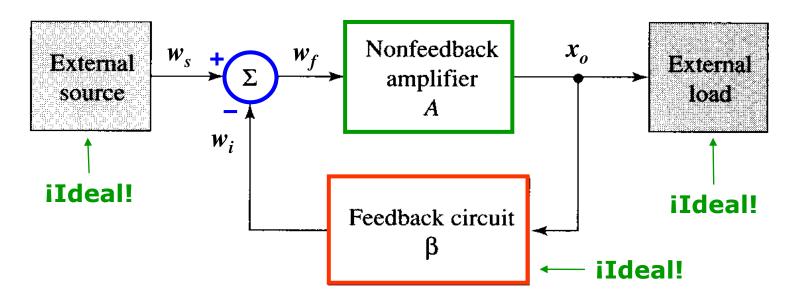
■ Efecto reflejado en los data-sheet por la frec. de ganancia unidad: f_t

$$A_{V}(s) = A_{m} \frac{1}{1 + (s/\omega_{H})}$$

$$f_{t} = A_{m} f_{H} = G \cdot BW$$

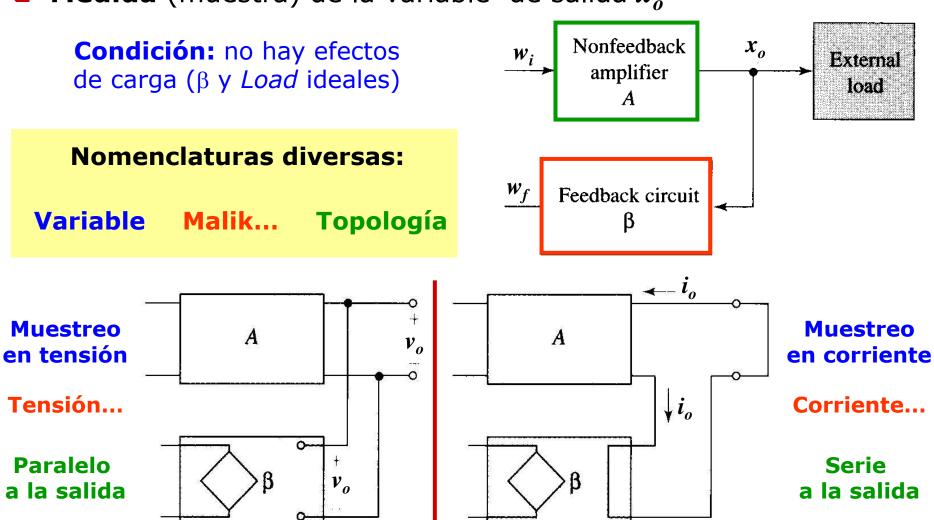
Open-Looped Voltage Gain as a Function of Frequency

AC ELECTRICAL CHARACTERISTICS


 $T_A=25^{\circ}C$, $V_S=\pm15V$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	μ Α741, μ Α741C			LINUT
			Min	Тур	Max	UNIT
R _{IN}	Parallel input resistance	Open-loop, f=20Hz	0.3			МΩ
C _{IN}	Parallel input capacitance	Open-loop, f=20Hz		1.4		рF
	Unity gain crossover frequency	Open-loop		1.0		MHz
	Transient response unity gain	V _{IN} =20mV, R _L =2kΩ, C _L ≤100pF				
t_R	Rise time			0.3		μs
	Overshoot			5.0		%
SR	Slew rate	C≤100pF, R _L ≥2kΩ, V _{IN} =±10V		0.5		V/μs

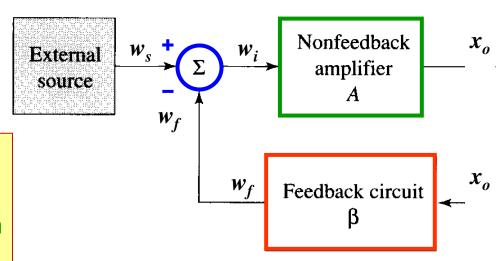
2.3. Tipos de realimentación

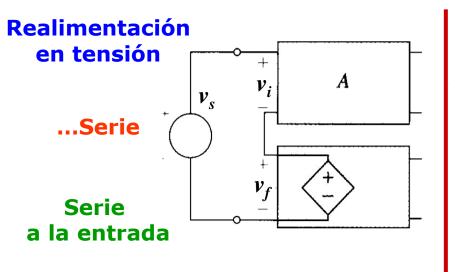

- Formulación teórica única: implica una idealización del problema
- Condiciones del estudio idealizado
 - Sin efectos de carga: las variables (V o I) no dependen de ellas.
 - Se mide la variable de salida (V o I)
 - La red β transfiere esta señal hacia la entrada

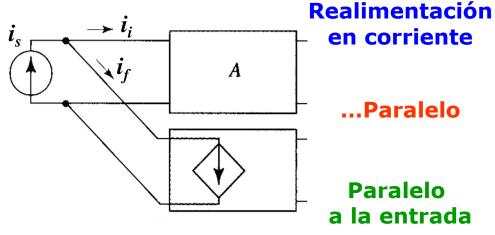
2.3. Tipos de Realimentación.

 $lue{}$ **Medida** (muestra) de la variable de salida x_o

2.3. Tipos de Realimentación

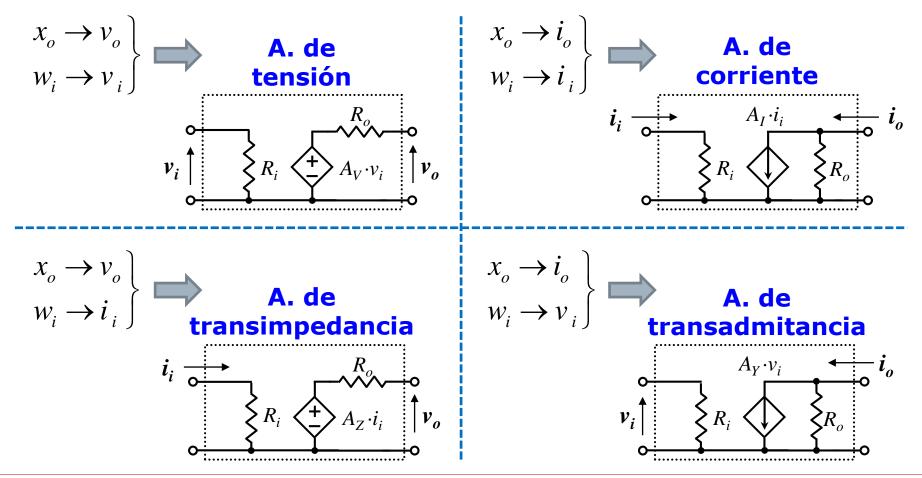



lacksquare Suma en la entrada $w_{s,i,f}$

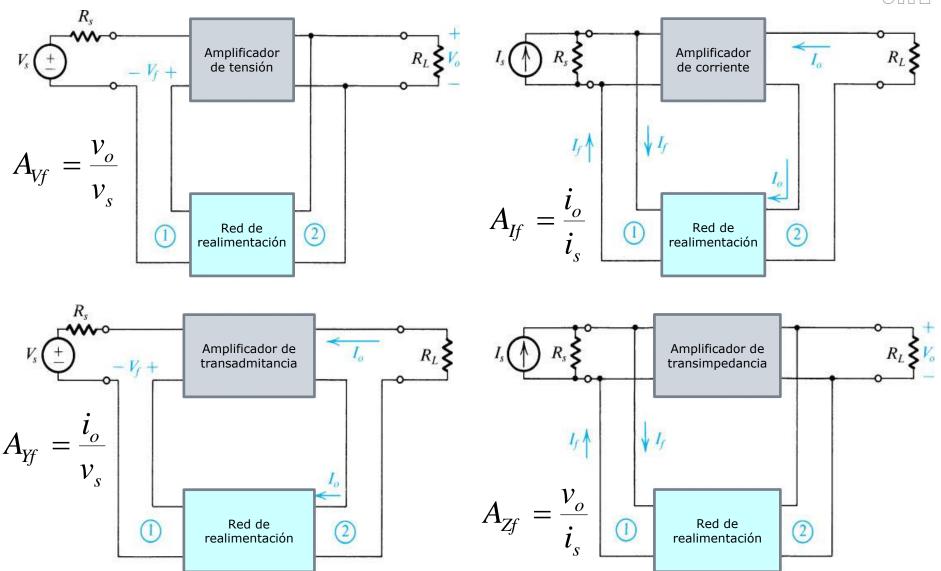

Condición: no hay efectos de carga (β y *Generador* ideales)

Ojo a nomenclaturas

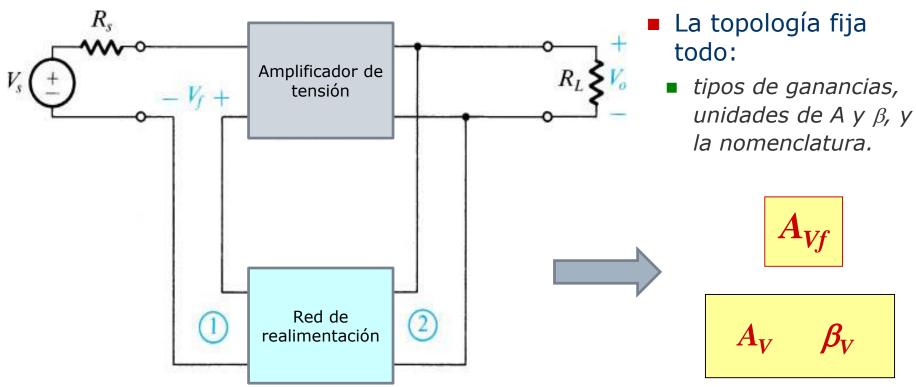
Variable Malik... Topología



2.4. Topologías de realimentación


- Al determinarse las variables eléctricas en salida y entrada:
 - Se fija y concreta el tipo de realimentación, las ganancias (unidades), la forma de conexión y los tipos apropiados de amplificador A y β

2.4. Topologías de realimentación


Tema 2-1: Teoría de Realimentación - 21

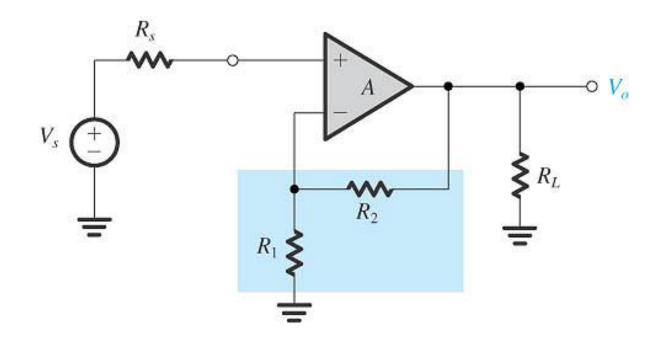
ightarrow 2.4.1. Serie-Paralelo (tensión-tensión) $A_{V\!f}$

Muestreo en tensión...

Realimentación en tensión...

Tensión... ... paralelo

Serie a la entrada


Paralelo a la salida

\supset 2.4.1. Serie-Paralelo (tensión-tensión) $A_{V\!f}$

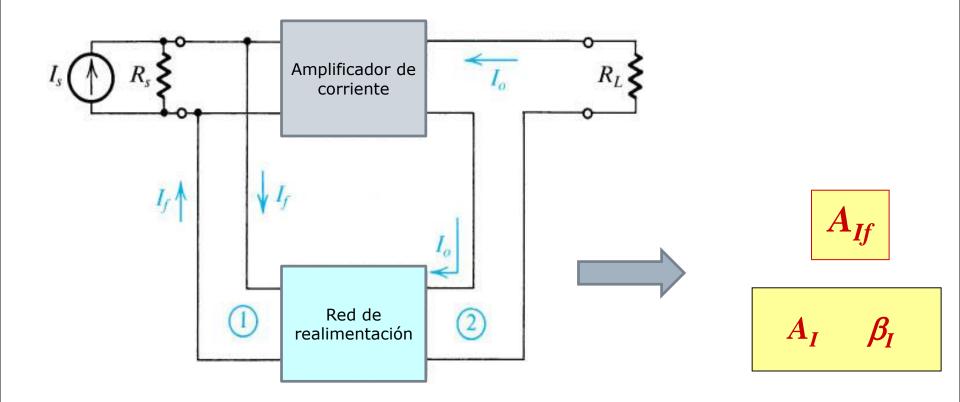
Ejemplo: amplificador no-inversor con AO

Muestreo en tensión...

Realimentación en tensión...

Tensión...

... serie

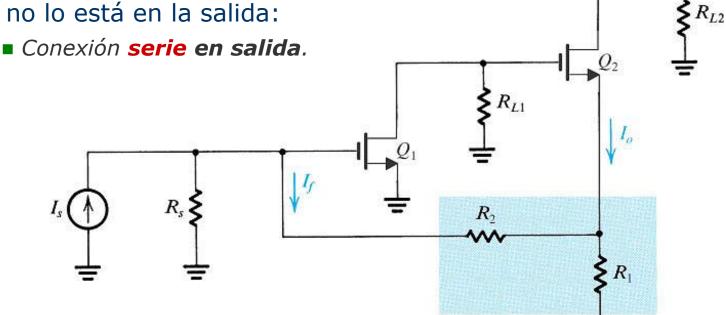

Serie a la entrada

Paralelo a la salida

\supset 2.4.2. Paralelo-Serie (corriente-corriente) A_{If}

Muestreo en corriente... Realimentación en corriente...

Corriente... ... paralelo

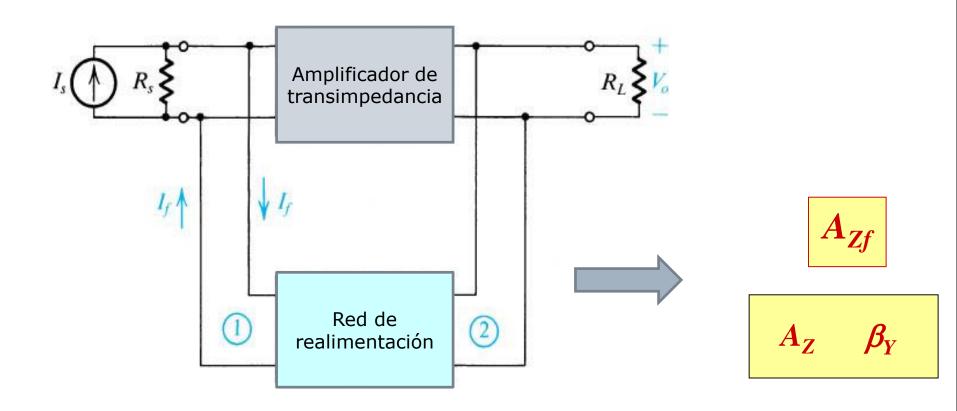

Paralelo a la entrada Serie a la salida

\supset 2.4.2. Paralelo-Serie (corriente-corriente) $A_{I\!f}$

- Ejemplo: amplificador discreto
 - β está en paralelo con la entrada...
 - Y no lo está en la salida:

Muestreo en corriente...

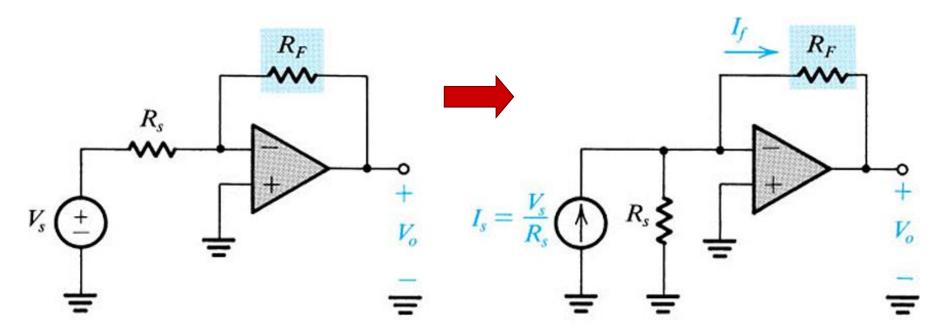
Realimentación en corriente...


Corriente... ... paralelo

Paralelo a la entrada

ightarrow 2.4.3. Paralelo-Paralelo (corriente-tensión) A_Z

Muestreo en tensión... Realimentación en corriente...


Tensión... ... paralelo

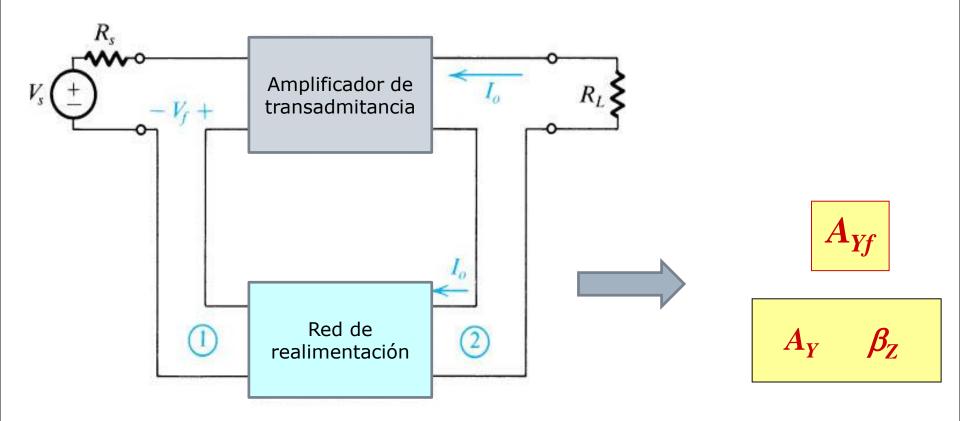
Paralelo a la entrada Paralelo a la salida

ightarrow 2.4.3. Paralelo-Paralelo (corriente-tensión) A_Z

- Un ejemplo interesante:
 - el amplificador inversor con AO, desde el punto de vista de teoría de Realimentación, en realidad debe considerarse como un A,

Muestreo en corriente...

Realimentación en corriente...


Corriente... ... paralelo

Paralelo a la entrada

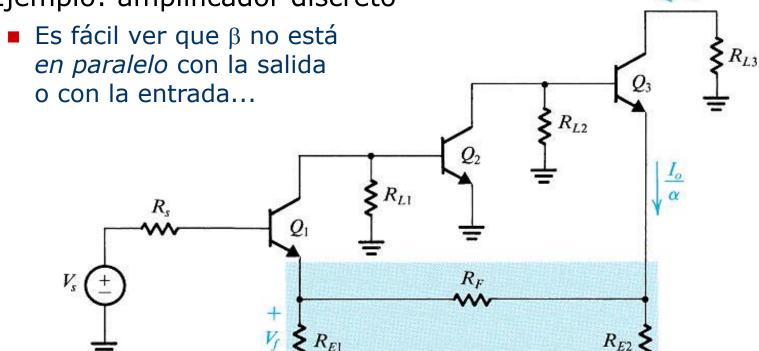
\supset 2.4.4. Serie-Serie (tensión-corriente) A_{Yf}

Muestreo en corriente...

Realimentación en tensión...

Corriente...

... Serie


Serie a la entrada

\supset 2.4.4. Serie-Serie (tensión-corriente) $A_{Y\!f}$

Ejemplo: amplificador discreto

Muestreo en corriente...

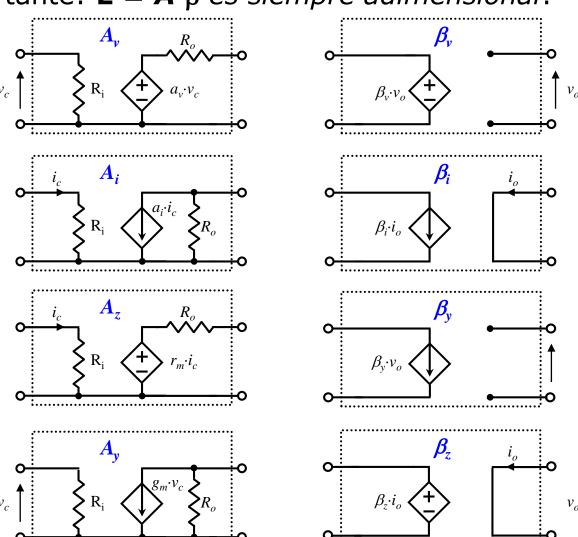
Realimentación en tensión...

Corriente...

... serie

Serie a la entrada

2.4.5. Resumen: detalle de las redes A y β


Observación importante: $\mathbf{L} = \mathbf{A} \cdot \mathbf{\beta}$ es siempre adimensional:

A. de tensión

A. de corriente

A. de transimpedancia

A. de transadmitancia

2.5. Realimentación con A real $(R_i - R_o)$

Hacia el problema real: efecto de las R terminales de A.

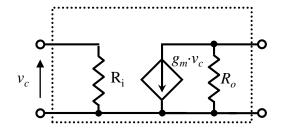
A. real de tensión

 v_c R_i $A_v \cdot v_c$

Realimentación más favorable: **Serie-Paralelo**

A. real de corriente

Realimentación más favorable: **Paralelo-Serie**

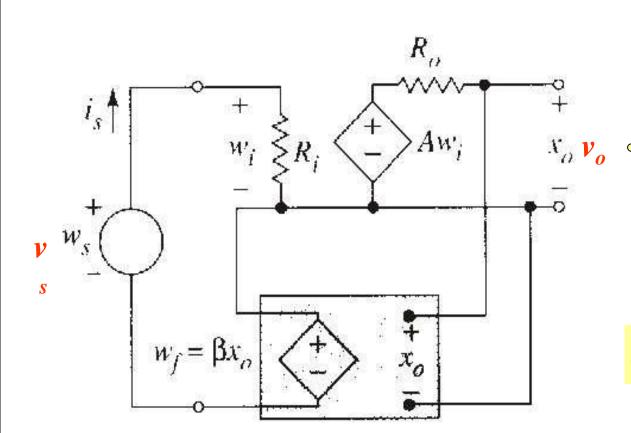

A. real de transimpedancia

 $R_{i} \xrightarrow{R_{o}} R_{o}$

Realimentación más favorable:

Paralelo-Paralelo

A. real de transadmitancia



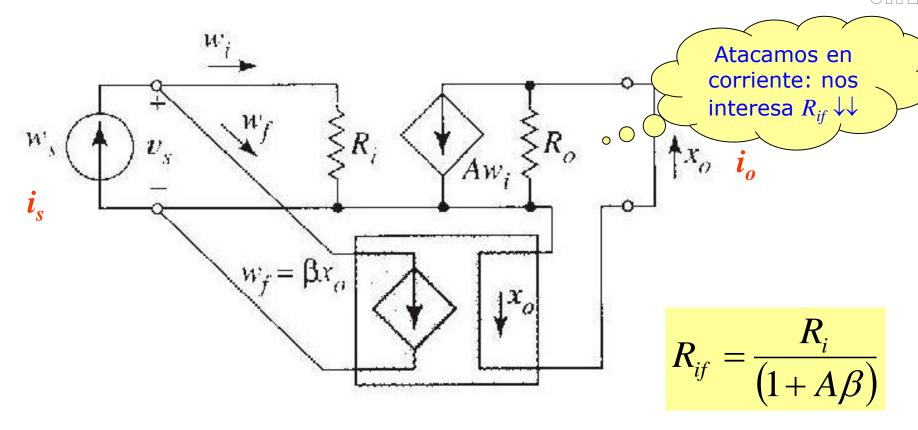
Realimentación más favorable: **Serie-Serie**

2.5.1. Efectos en R de entrada: en serie

Atacamos en tensión: nos interesa $R_{if} \uparrow \uparrow$

$$R_{if} = (1 + A\beta) \cdot R_i$$

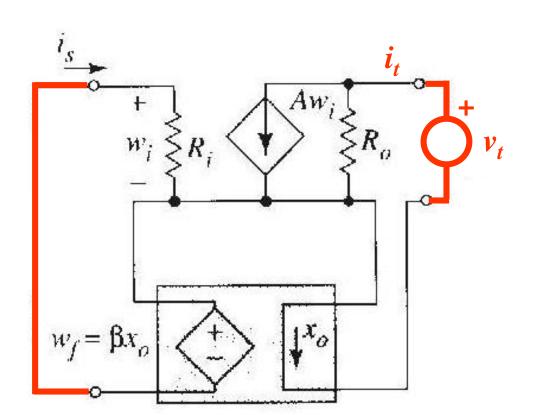
Muestreo en tensión... Realimentación en tensión...


Tensión... ... paralelo

Serie a la entrada Paralelo a la salida

2.5.1. Efectos en R de entrada: en paralelo

Muestreo en corriente... Realimentación en corriente...


Corriente... ... paralelo

Paralelo a la entrada Serie a la salida

2.5.2. Efectos en R de salida: en serie

Salimos en corriente: nos interesa R_{of} $\uparrow \uparrow$

$$R_{of} = (1 + A\beta)R_o$$

Muestreo en corriente...

Corriente...

Serie a la entrada

Realimentación en tensión...

... Serie

2.5.3. Conclusión: efecto en R terminales

Asociación en **serie a la entrada** (realimentación en tensión)

 $R_{if} = (1 + A\beta) \cdot R_i$

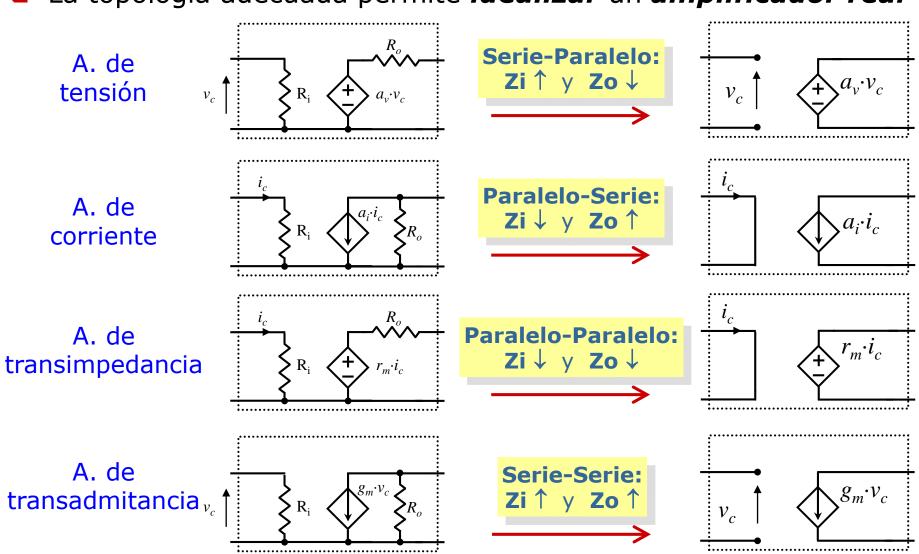
 Asociación en paralelo a la entrada (realimentación en corriente)

$$R_{if} = \frac{R_i}{(1 + A\beta)}$$

 Asociación en serie a la salida (muestreo en corriente)

$$R_{of} = (1 + A\beta) \cdot R_o$$

 Asociación en paralelo a la salida (muestreo en tensión)


$$R_{of} = \frac{R_o}{(1 + A\beta)}$$

2.5.3. Conclusión

La topología adecuada permite idealizar un amplificador real

- En este tema, las transparencias deben ser complementadas con las demostraciones, ejemplos y ejercicios incluidos en el texto básico.
- □ Bibliografía básica. Para la parte 1 del tema:

[b1].- Malik, capítulo 9: secciones 9.1 a 9.3

Bibliografía complementaria o alternativa. Todo el tema en:

[b2].- Sedra_Smith, capítulo 8 completo.

[b3].- Sedra Smith, capítulo 9: hasta la sección 9.10.

- Gráficas y ejemplos. Fuentes:
 - Elaborados por los profesores del Dpto. de Electrónica.
 - Extraídas de los textos y referencias detallados.

Control de revisiones

■ 2015-02-20: versión inicial.